Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Soft Matter ; 16(2): 487-493, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31803881

RESUMO

Spider silk possesses unique mechanical properties like large extensibility, high tensile strength, super-contractility, etc. Understanding these mechanical responses requires characterization of the rheological properties of silk beyond the simple force-extension relations which are widely reported. Here we study the linear and non-linear viscoelastic properties of dragline silk obtained from social spider Stegodyphus sarasinorum using a Micro-Extension Rheometer that we have developed. Unlike continuous extension data, our technique allows for the probing of the viscoelastic response by applying small perturbations about sequentially increasing steady-state strain values. In addition, we extend our analysis to obtain the characteristic stress relaxation times and the frequency responses of the viscous and elastic moduli. Using these methods, we show that in a small strain regime (0-4%) dragline silk of social spiders shows a strain softening response followed by a strain stiffening response at higher strains (>4%). The stress relaxation time, on the other hand, increases monotonically with increasing strain for the entire range. We also show that the silk stiffens while ageing within the typical lifetime of a web. Our results demand the inclusion of the kinetics of domain unfolding and refolding in the existing models to account for the relaxation time behavior.


Assuntos
Seda/química , Animais , Módulo de Elasticidade , Cinética , Reologia , Aranhas , Resistência à Tração , Viscosidade
3.
PLoS One ; 8(11): e79660, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236152

RESUMO

Biological mimicry is often multimodal, in that a mimic reinforces its resemblance to another organism via different kinds of signals that can be perceived by a specific target audience. In this paper we describe a novel scenario, in which a mimic deceives at least two distinct audiences, each of which relies primarily on a different sensory modality for decision-making. We have previously shown that Peckhamia picata, a myrmecomorphic spider that morphologically and behaviorally resembles the ant Camponotus nearcticus, experiences reduced predation by visually-oriented jumping spiders. Here we report that Peckhamia also faces reduced aggression from spider-hunting sphecid wasps as well as from its model ant, both of which use chemical cues to identify prey. We also report that Peckhamia does not chemically resemble its model ants, and that its total cuticular hydrocarbons are significantly lower than those of the ants and non-mimic spiders. Although further studies are needed to clarify the basis of Peckhamia's chemically-mediated protection, to our knowledge, such 'double deception,' in which a single organism sends misleading visual cues to one set of predators while chemically misleading another set, has not been reported; however, it is likely to be common among what have until now been considered purely visual mimics.


Assuntos
Enganação , Comportamento Predatório , Animais , Formigas/fisiologia , Feminino , Aranhas/fisiologia , Vespas/fisiologia
4.
Environ Entomol ; 41(6): 1474-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23321095

RESUMO

An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.


Assuntos
Reação de Fuga , Comportamento Predatório , Aranhas/fisiologia , Vespas/fisiologia , Animais , Tamanho Corporal , Aranhas/anatomia & histologia , Vespas/anatomia & histologia
5.
Front Behav Neurosci ; 5: 16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21503138

RESUMO

Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories.

6.
Environ Entomol ; 40(5): 1223-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22251733

RESUMO

Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.


Assuntos
Adaptação Biológica , Comportamento Predatório , Aranhas , Animais , Formigas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...